

MATHEMATICS SOLUTION (CBCGS SEM – 4 DEC 2019) BRANCH – IT ENGINEERING

1 a) Find greatest common divisor of the following pairs of integer, using Euclidean (05) algorithm. (3083, 2893).

Ans: gcd (3083, 2893) $3083 = 1 \times 2893 + 190$ $2893 = 15 \times 190 + 43$ $190 = 4 \times 43 + 18$ $43 = 2 \times 18 + 7$ $18 = 2 \times 7 + 4$ $7 = 1 \times 4 + 3$ $4 = 1 \times 3 + 1$ $3 = 1 \times 3 + 0$ \therefore gcd(3083, 2893) = 1

1 b) Given two lines regression $6y = 5x + 90, 15x = 8y + 130, \sigma_x^2 = 16$

(05)

Find (i) \overline{x} and \overline{y} (ii)Find r

$$\therefore y = \frac{5}{6}x + \frac{90}{6}$$
$$\therefore y = \frac{5}{6}x + 15 \longrightarrow$$

And, 15x = 8y + 13

$$\therefore y = \frac{15}{8}x - \frac{130}{8} \to (2)$$

Let $b_1 = \frac{5}{6}$ and $b_2 = \frac{15}{8}$

Since $|b_1| < |b_2|$,

$$b_{yx} = b_1 = \frac{5}{6} \& b_{xy} = \frac{1}{b_2} = \frac{8}{15} \to (3)$$

 \therefore Equation (1) is regression equation of Y and X type and equation (2) is regression equation of X and Y type.

From (1) and (2) $\frac{5}{6}x + 15 = \frac{15}{8}x - \frac{65}{4}$ $\therefore \frac{65}{4} + 15 = \frac{15}{8}x - \frac{5}{6}x$ $\therefore \frac{125}{4} = \frac{25}{24}x$ $\therefore x = 30$ Substitute x = 30 in (1) $\therefore y = \frac{5}{6}(30) + 15 = 40$ Now, r= $\pm \sqrt{b_{yx} \cdot b_{xy}}$ $= \pm \sqrt{\frac{5}{6}}x \frac{8}{15}$ (from 3)

$$=\pm\frac{2}{3}$$

Since, b_{yx} and b_{xy} are both positive, 'r' is positive.

$$\therefore$$
 r = $\frac{2}{3}$ \rightarrow (4)

Also, given, $\sigma_x^2 = 16$

$$\therefore \sigma_x = 4 \rightarrow (5)$$

Using, $b_{yx} = r \frac{\sigma_y}{\sigma_x}$

$$\therefore \frac{5}{6} = \frac{2}{3} \cdot \frac{\sigma_y}{\sigma_x}$$
 (From 3, 4 & 5)

 $\therefore \sigma_y = 5$

$$\therefore \sigma_v^2 = 25$$

Ans. 1) $\bar{x} = 30; \bar{y} = 40;$

2)
$$r = \frac{2}{3}$$
;
3) $\sigma_v^2 = 25$

1 c) Prove that A = $\{1, 2, 3, 4, 5, 6\}$ is a finite abelian group under multiplication (05) modulo.

Ans :- We first prepare the table of multiplication modulo 7 denoted by \otimes . From the table it is clear that \otimes is a binary operation.

\otimes	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

G 1: From the table we see that \otimes is associative.

e.g. $2 \otimes (3 \otimes 5) = 2 \otimes 1 = 2$ and $(2 \otimes 3) \otimes 5 = 6 \otimes 5 = 2$

G 2 : The first column (or the first row) show that 1 is the identity for \otimes .

G 3 :The positions of the multiplicative identity 1 in every row (and every column) show that every element of A has the multiplicative inverse.

e.g.2 \otimes 4 = 1 and 4 \otimes 2 = 1 \therefore (2)⁻¹ = 4and(4)⁻¹ 2 \therefore *G* is a group modulo 7.

G 4 :Further, $a \otimes b = b \otimes a$ **e.g.** $4 \otimes 5 = 6$ and $5 \otimes 4 = 6$ \therefore G is a Abelian Group.

1 d) A random variable x has the following probability function

(05)

x :1234567P(x) :K2K3K K^2 $K^2 + k$ $2K^2$ $4K^2$ Find :(i) k(ii) p(x < 5)</th>

Ans :-i) for any probability mass function, $\sum_{i=-\infty}^{+\infty} Pi = 1$

$$\therefore P(1) + P(2) + P(3) + P(4) + P(5) + P(6) + P(7) = 1$$

$$\therefore K + 2K + 3K + K^{2} + K^{2} + K + 2K^{2} + 4K^{2} = 1$$

$$\therefore 8K^{2} + 7K = 1$$

$$\therefore 8K^{2} + 7K - 1 = 0$$

$$\therefore K = \frac{1}{8}$$

pmf is,

$$\therefore \quad \boxed{\frac{X}{P(x)} \quad \frac{1}{8} \quad \frac{2}{2} \quad \frac{3}{3} \quad \frac{4}{5} \quad \frac{5}{6} \quad \frac{6}{7} \quad \frac{7}{64}}{\frac{2}{64} \quad \frac{4}{64}}$$

ii) P (x< 5)

$$\therefore P (x < 5) = p(1) + P(2) + P(3) + P(4)$$

$$= \frac{1}{8} + \frac{2}{8} + \frac{3}{8} + \frac{1}{64}$$

$$= \frac{49}{64}$$

2 a) Calculation coefficient of correlation between x and y
x: 3 6 4 5 7
y: 2 4 5 3 6
Ans: - n = 5

$$\overline{x} = \frac{\Sigma X}{n} = \frac{25}{5} = 5$$

(06)

$$\bar{y} = \frac{\sum Y}{n} = \frac{20}{5} = 4$$

:.

Х	Y	$x = X - \overline{X}$	$y = Y - \overline{Y}$	<i>x</i> ²	y^2	XY
3	2	-2	-2	4	4	4
6	4	1	0	1	0	0
4	5	-1	1	1	1	-1
5	3	0	-1	0	1	0
7	6	2	2	4	4	4
$\sum X = 25$	$\sum Y = 20$			$\sum x^2 = 10$	$\sum y^2 = 10$	$\sum xy = 7$

: Coefficient of correlation between x and y,

$$r = \frac{\sum xy}{\sqrt{\sum x^{-2} \cdot \sum y^{2}}} = \frac{7}{\sqrt{10.10}} = \frac{7}{10} = 0.7$$

- \therefore r = 0.7
 - 2 b) A random sample of size 16 from normal population. Showed a mean of 103.75 cm and sum of squares of deviation from the mean 843.75 cm² can we say that the population has mean of 108.75 cm? (06)

n = 16

- $\bar{x} = 103.75$
- $\in (x \bar{x})^2 = 83.75$

1)
$$H_0: \mu = 108.75$$

 $H_1: \mu \neq 108.75$

2)
$$t = \frac{\frac{\overline{x} - \mu}{S}}{\sqrt{n-1}}$$

$$s = \sqrt{\frac{\in (x - \bar{x})^2}{n}} = \sqrt{\frac{83.75}{16}} = 2.2878$$

$$103.75 - 108.75$$

$$\therefore \ t = \frac{2.2878}{\sqrt{15}} = -8.464$$

|t| = 8.464 (Calculated Value)

3) Table valueLos = 5%dof = n - 1 = 16-1 = 15

t = 2.131 (table value)

- \therefore cal value > table value
- \therefore H_0 is rejected
- *i.e* H_1 is accepted

Population does not have a mean of 105.75

2 c) Prove that G = $\{1, -1, i, -i\}$ is a group under usual multiplication of complex (08) numbers.

Ans. Let a, $b \in G$ The composition table is

*	1	-1	i	-i
1	1	-1	i	-i
-1	-1	1	-i	i
i	i	—i	-1	_ 1
-i	-i	i	1	-1

From above table, we observe,

a* b exists and a * $b \in G$.

∵ *is binary operator in G.

<u>G1:</u>

Multiplication of complex number is associative.

∴ * is associative.

<u>G2:</u>

From table, we observe, first row is same as the header.

 \therefore 1 \in G is the identity.

∴ Identity exists.

<u>G3:</u>

From table, we observe, identity elements (i.e.1) is present in each row.

 $\therefore 1^{-1} = 1; (-1)^{-1} = -1; i^{-1} = -i; (-i)^{-1} = i$

: inverse of each elements exist and each inverse \in G.

∴ Inverse exists. Hence, G is group usual multiplication of complex number.

25

3 a) Draw Hasse diagram for ($D_{75} \leq$), Check whether its a lattice.

(06)

 $Ans: D_{75} = \{ 1, 3, 5, 15, 25, 75 \}$

Hasse Diagram :

am : 15 25

1

LUB

V	1	3	5	15	25	75
1	1	3	5	15	25	75
3	3	3	15	15	75	75
5	5	15	5	15	25	75
15	15	15	15	15	75	75
25	25	75	25	75	25	75
75	75	75	75	75	75	75

1	DEGREE & DIPLOMA
	ENCINEEDING

GLB

				ENGI	NEERING			
	٨	1	3	5	15	25	75	
1		1	1	1	1	1	1	
3		1	3	1	3	1	3	
5		1	1	5	5	5	5	
15		1	3	5	15	5	15	
25		1	1	5	5	25	25	
75		1	3	5	15	25	75	

Since LUB & GLB exist for all combination D_{75} is lattice.

3 b) Out of 1000 families of 3 children each how many would you expect to have 2 boys and 1 girl? (06)

Ans :-N = 1000 n = 3 p = 0.5q = 0.5

Using Binomial Distribution, $P(x) = {}^{n}c_{x}p^{x}q^{n-x}$ \therefore P (2 boys and 1 girl) $= {}^{3}C_{2}(0.5)^{2}(0.5)^{1} \times {}^{3}C_{1}(0.5)^{1}(0.5)^{2}$

 $= (3)(0.125) \times (3)(0.125)$

$$= 0.1406$$

∴ Expected Number = Np

 $= 1000 \times 0.1406$

= 140.6 **≈**140

3c)

(08)

i) Find last digit of base 7 expansion of 3^{100} i. e 3^{100} (mod 7) by using Fermat's theorem.

By Fermat's little theorem, $a^{P-1} \equiv 1 \pmod{p}$ Ans :

∴ a = 3, p = 7

$$3^{7-1} \equiv 1 \pmod{7}$$

 $3^6 \equiv 1 \pmod{7}$
 $3^{96} \equiv 1 \pmod{7}$

 $3^{100} \equiv 81 \pmod{7}$

 $3^{100} \equiv 4 \pmod{7}$

ii) Find the Legendre's symbol $\left(\frac{19}{23}\right)$

$$19 \equiv 3 \pmod{4}$$

$$23 \equiv 3 \pmod{4}$$

$$\cdot \left(\frac{19}{23}\right) = -\left(\frac{23}{19}\right) \rightarrow \qquad (1)$$

$$\left(\frac{23}{19}\right) = \left(\frac{4}{19}\right) = \left(\frac{2^2}{19}\right) = 1 \rightarrow \qquad (2)$$

 $\left(\frac{19}{23}\right) = -1$

∴ from (1) & (2)

4

А Degree of every vertex = (n - 1).

No. of edges, $E = \frac{n (n-1)}{2}$

$$\therefore$$
 for 8 vertices, $E = \frac{8(8-1)}{2} = 28$

∴ A complete graph with 8 vertices have 28 edges.

4 b) Find remainder when 2^{50} and 41^{65} are divisible by 7

(06)

(06)

Ans : (i)We know, 2³=8=7x1+1

 $\therefore 2^3 = 8 \equiv 1 \pmod{7}$

$$\therefore (2^3)^{16} \equiv 1^{16} \pmod{7}$$

$$\therefore 2^{48} \equiv 1 \pmod{7}$$

$$\therefore 2^{48} x \ 2^2 \equiv 1 \ x \ 2^2 \pmod{7}$$

$$\therefore 2^{50} \equiv 4 \pmod{7}$$

Hence, the remainder when 2^{50} is divided by 7 is 4.

(ii) We know, $41 = 5 \times 7 + 6 \therefore 41 \equiv 6 \pmod{7}$

$$41 \equiv 1 \pmod{7}$$
$$(41)^{65} \equiv (-1)^{65} \pmod{7}$$
$$41^{65} \equiv -1 \pmod{7}$$
$$41^{65} \equiv 6 \pmod{7}$$

Hence, the remainder when 41^{65} is divided by 7 is 6.

4 c) Investigate the association between the darkness of eye colour in father and son from the following data: (06)

	Colour of Father's eyes				
Colour of son's		Dark	Not Dark	Total	
eyes	Dark	48	90	138	
	Not Dark	80	782	862	
	Total	128	872	1000	

Ans.

Observed Frequency (0)	Expected Frequency (E)	$x^2 = \frac{(o-E)^2}{E}$
48	18	50,0000
90	120	7.5000
80	110	8.1818
782	752	1.1968
	Total	66.8786

Step I:

Null Hypothesis (H_0) : There is no association between the darkness of eye colour in father and son.

Alternative Hypothesis (H_a) : There is association between the darkness of eye colour in father & son. (Two tailed test).

Step 2:

LOS = 5% (Two tailed test) Degree of Fredom = (r - 1) (c-1)= (2 - 1) (2 - 1)= 1 \therefore Critical value $(x_a^2) = 3.841$ Step 3: Test Statistic $x_{cal}^{2} = \sum \frac{(0-E)^{2}}{E} = 66.8786$ Step 5: Decision Since $x_{cal}^2 > x_a^2$, H₀ is rejected. : There is association between the darkness of eye colour in father and son.

5 a) Let $L = \{ 1, 2, 3, 4, 12 \}$ and the relation be " is divisible by " write compliments of L.

5 b) If x is a Poisson variate and p (x = 0)= 6p (x = 3) Find P (x = 2)

(06)

Ans : Using Poisson Distribution, P (x) = $\frac{e^{-m} \cdot m^x}{x!}$

$$P(x = 0) = 6 P (x = 3)$$

$$\frac{e^{-m} \cdot m^0}{0!} = 6 \quad \frac{e^{-m} \cdot m^3}{3!}$$

$$1 = m^3$$

∴
$$P(x = 2) = \frac{e^{-1} \cdot 1^2}{2!} = 0.1839$$

5 c) Define the following terms giving illustration.

(08)

1.	Simple graph	2.	Complete graph
3.	Bipartite graph	4.	Planar graph

1. Simple Graphs (K)

 \rightarrow A graph in which there are No loops, No Multiple edges and every vertex has same degree.

No. of Edges,
$$E = \frac{n \times d}{2}$$
, $n \rightarrow no.of vertex$.
Example :- 4
2
1
 $E = \frac{4 \times 2}{2} = 4$

2. <u>Complete Graph . (K_n) </u>

 \rightarrow A simple graph is complete graph in which every pair of vertices are adjacent.

Degree of every vertex = (n - 1). No. of edges, $E = \frac{n (n-1)}{2}$

Example :-

3. Bipartite Graph

 \rightarrow A graph G (V, E) is called Bipartite (= of two parts) if

- (i) V can be expressed as a Union of two disjoint sets U and W (V = UUW and U \cap W= Ø)
- (ii) Every edge in E has one vertex in U and the Other in W.

6 a) Solve : $x = 1 \pmod{5}$, $x = 2 \pmod{6}$, $x = 3 \pmod{7}$

(06)

Ans:

<i>a</i> ₁ = 1	$m_1 = 5$
$a_2 = 2$	$m_2 = 6$
$a_3 = 3$	$m_3 = 7$

 $M = m_1.m_2.m_3$

 $M=5\times6\times7=210$

 $M_1=6\times 7=42$

 $M_2 = 5 \times 7 = 35$

$$M_3 = 5 \times 6 = 30$$

$M_1 x \equiv 1 \pmod{m_1}$	$M_2 x \equiv 1 \pmod{m_2}$	$M_3 x \equiv 1 \pmod{m_3}$
$42x \equiv 1 (mod \ 5)$	$35x \equiv 1 \pmod{6}$	$30x \equiv 1 \pmod{7}$
$1 \equiv 42x \ (mod \ 5)$	$1 \equiv 35x \; (mod \; 6)$	$1 \equiv 30x (mod \ 7)$
$1 \equiv 2x (mod \ 5)$	$1 \equiv 5x \; (mod \; 6)$	$1 \equiv 2x \; (mod \; 7)$
$3 \equiv 6x (mod \ 5)$	$1 \equiv -x \pmod{6}$	$4 \equiv 8x \; (mod \; 7)$
$3 \equiv x \ (mod \ 5)$	$x \equiv -1 \pmod{6}$	$4 \equiv x \pmod{7}$
$x \equiv 3 \ (mod \ 5)$	$x \equiv 5 \pmod{6}$	$x \equiv 4 \; (mod \; 7)$

By Chinese Remainder Theorem,

 $x \equiv [a_1M_1x_1 + a_2M_2x_2 + a_3M_3x_3] \mod M.$ $x \equiv [(1)(42)(3) + (2)(35)(5) + (3)(30)(4)] \mod 210$ $x \equiv 836 \pmod{210}$ $x \equiv 206 \pmod{210}$ $\therefore x = 206 \pmod{210}$ $x = 206 + 210 k \pmod{210}$ x = 206 + 210 k + 10 k + 1

6 b) A certain injection administered to 12 patients resulted in following changes of blood pressure (5, 2, 8, -1, 3, 0, 6, -2, 1, 5, 0, 4) can it be concluded that injection will be in general accompanied by an increase blood pressure ? (06)

Ans : n = 12

 $H_0: \mu = 0$ $H_1: \mu \neq 0$

Х	d = x - a	d^2
5	3	9
2	0	0
3	6	36
-1	-3	9
3	1	1
0	-2	4
6	4	16
-2	-4	16

ENGINEERING

		ENG
1	-1	1
5	-3	4
0	-2	4
4	2	4

Let
$$a = 2$$

 $\in d = 7$ $\in d^2 = 109$

$$\bar{x} = a + \frac{\epsilon d}{n}$$

$$\therefore \quad \bar{x} = \frac{2+7}{12} = 2.5833$$

$$\epsilon (x - \bar{x})^2 = \epsilon d^2 - \frac{(\epsilon d)^2}{n}$$

$$= 109 - \frac{(7)^2}{12}$$

$$= 104.916$$

$$s = \sqrt{\frac{\in (x - \bar{x})^2}{n}} = \sqrt{\frac{104.916}{12}} = 2.956$$

$$t = \frac{\frac{\overline{x}}{s}}{\sqrt{n-1}} = \frac{2.5833}{2.956} = 2.898$$
 (Calculated Value)

Table value

 $\begin{array}{l} \text{Los} \rightarrow 5\% \\ \text{dof} \rightarrow \text{ n - 1 = 11} \end{array}$

 \therefore k = 2.201 (Table value) Cal cal > Table value

 \therefore H_0 is rejected, H_1 is accepted.

: It can be concluded that injection will in general accompanied by increase B. P.

6 c)

(i)Write the following permutation as product of disjoint cycles.

f = (1 3 2 5) (1 4 5) (2 5 1)

Ans.

$$f(1) = (1 \ 3 \ 2 \ 5)(1 \ 4 \ 5)(2 \ 5 \ 1) (1)$$
$$= (1 \ 3 \ 2 \ 5)(1 \ 4 \ 5)(2)$$
$$= (1 \ 3 \ 2 \ 5)(2)$$

::f(1) = 5

$$f(2) = (1 \ 3 \ 2 \ 5)(1 \ 4 \ 5)(2 \ 5 \ 1)(2)$$
$$= (1 \ 3 \ 2 \ 5)(1 \ 4 \ 5)(5)$$
$$= (1 \ 3 \ 2 \ 5)(1)$$

 $\therefore f(2) = 3$

 $f(3) = (1 \ 3 \ 2 \ 5) \ (1 \ 4 \ 5) \ (2 \ 5 \ 1) \ (3)$ $= (1 \ 3 \ 2 \ 5) \ (1 \ 4 \ 5) \ (3)$ $= (1 \ 3 \ 2 \ 5) \ (3)$

$$\therefore f(3) = 2$$

 $f(4) = (1 \ 3 \ 2 \ 5) \ (1 \ 4 \ 5) \ (2 \ 5 \ 1) \ (4)$ $= (1 \ 3 \ 2 \ 5) \ (1 \ 4 \ 5) \ (4)$ $= (1 \ 3 \ 2 \ 5) \ (5)$ $\therefore f(4) = 1$

$$f(5) = (1 \ 3 \ 2 \ 5) \ (1 \ 4 \ 5) \ (2 \ 5 \ 1) \ (5)$$
$$= (1 \ 3 \ 2 \ 5) \ (1 \ 4 \ 5) \ (1)$$
$$= (1 \ 3 \ 2 \ 5) \ (4)$$

::f(5) = 4

(08)

$$\therefore f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4 \end{pmatrix}$$

Hence, expressing permutation f as the product of disjoint cycle we have f = (1 5 4) (2 3)

(ii) Simplify as sum of product (A+B) (A+B')(A'+B)(A'+B')

Ans. Consider,

 $\therefore (\mathbf{A} + \mathbf{B})(\mathbf{A} + \mathbf{B}')(\mathbf{A}' + \mathbf{B})(\mathbf{A}' + \mathbf{B}') = 0$