MATHEMATICS SOLUTION (CBCGS SEM - 4 DEC 2019) BRANCH - IT ENGINEERING

1 a) Find greatest common divisor of the following pairs of integer, using Euclidean
(05) algorithm. (3083, 2893).

Ans: $\operatorname{gcd}(3083,2893)$

$$
\begin{aligned}
& 3083=1 \times 2893+190 \\
& 2893=15 \times 190+43 \\
& 190=4 \times 43+18 \\
& 43=2 \times 18+7 \\
& 18=2 \times 7+4 \\
& 7=1 \times 4+3 \\
& 4=1 \times 3+1 \\
& 3=1 \times 3+0 \\
& \therefore \operatorname{gcd}(3083,2893)=1
\end{aligned}
$$

1 b) Given two lines regression $6 y=5 x+90,15 x=8 y+130, \sigma_{x}{ }^{2}=16$
Find (i) \bar{x} and \bar{y} (ii)Find r
Ans: $6 y=5 x+90$
$\therefore y=\frac{5}{6} x+\frac{90}{6}$

$$
\therefore y=\frac{5}{6} x+15 \quad \rightarrow(1)
$$

And, $15 x=8 y+13$

$$
\therefore y=\frac{15}{8} x-\frac{130}{8} \rightarrow(2)
$$

Let $\mathrm{b}_{1}=\frac{5}{6}$ and $\mathrm{b}_{2}=\frac{15}{8}$
Since $\left|b_{1}\right|<\left|b_{2}\right|$,

$$
b_{y x}=b_{1}=\frac{5}{6} \& b_{x y}=\frac{1}{b_{2}}=\frac{8}{15} \rightarrow(3)
$$

\therefore Equation (1) is regression equation of Y and X type and equation (2) is regression equation of X and Y type.

OUR CENTERS :

ENGINEERING
From (1) and (2)
$\frac{5}{6} x+15=\frac{15}{8} x-\frac{65}{4}$
$\therefore \frac{65}{4}+15=\frac{15}{8} x-\frac{5}{6} x$
$\therefore \frac{125}{4}=\frac{25}{24} x$
$\therefore x=30$
Substitute $x=30$ in (1)
$\therefore y=\frac{5}{6}(30)+15=40$
Now, $\mathrm{r}= \pm \sqrt{b_{y x} \cdot b_{x y}}$

$$
\begin{aligned}
& = \pm \sqrt{\frac{5}{6}} x \frac{8}{15}(\text { from } 3) \\
& = \pm \frac{2}{3}
\end{aligned}
$$

Since, $b_{y x}$ and $b_{x y}$ are both positive, ' r ' is positive.

$$
\begin{equation*}
\therefore \mathrm{r}=\frac{2}{3} \rightarrow \tag{4}
\end{equation*}
$$

Also, given, $\sigma_{x}{ }^{2}=16$

$$
\therefore \sigma_{x}=4 \rightarrow(5)
$$

Using, $b_{y x}=\mathrm{r} \frac{\sigma_{y}}{\sigma_{x}}$

$$
\begin{aligned}
& \therefore \frac{5}{6}=\frac{2}{3} \cdot \frac{\sigma_{y}}{\sigma_{x}}(\text { From } 3,4 \& 5) \\
& \therefore \sigma_{y}=5 \\
& \therefore \sigma_{y}{ }^{2}=25
\end{aligned}
$$

Ans. 1) $\bar{x}=30 ; \bar{y}=40$;
2) $\mathrm{r}=\frac{2}{3}$;
3) $\sigma_{y}{ }^{2}=25$

1 c) Prove that $A=\{1,2,3,4,5,6\}$ is a finite abelian group under multiplication modulo.

Ans :- We first prepare the table of multiplication modulo 7 denoted by \otimes. From the table it is clear that \otimes is a binary operation.

\otimes	1	2	3	4	5	6
1	1	2	3	4	5	6
2	2	4	6	1	3	5
3	3	6	2	5	1	4
4	4	1	5	2	6	3
5	5	3	1	6	4	2
6	6	5	4	3	2	1

G 1: From the table we see that \otimes is associative.
e.g. $\quad 2 \otimes(3 \otimes 5)=2 \otimes 1=2$
and $(2 \otimes 3) \otimes 5=6 \otimes 5=2$

G 2 : The first column (or the first row) show that 1 is the identity for \otimes.

G 3 :The positions of the multiplicative identity 1 in every row (and every column) show that every element of A has the multiplicative inverse.
e.g. $2 \otimes 4=1 \quad$ and $\quad 4 \otimes 2=1$
$\therefore(2)^{-1}=4$ and $(4)^{-1} 2$
$\therefore \quad G$ is a group modulo 7 .
G 4 :Further, $\mathrm{a} \otimes \mathrm{b}=\mathrm{b} \otimes \mathrm{a}$
e.g. $4 \otimes 5=6 \quad$ and $\quad 5 \otimes 4=6$
$\therefore \quad \mathrm{G}$ is a Abelian Group.

1 d) A random variable x has the following probability function

$\mathrm{x}:$	1	2	3	4	5	6	7
$\mathrm{P}(\mathrm{x}):$	K	2 K	3 K	K^{2}	$K^{2}+k$	$2 K^{2}$	$4 K^{2}$

Find: (i) $k \quad$ (ii) $p(x<5)$

Ans :-i) for any probability mass function, $\sum_{i=-\infty}^{+\infty} P i=1$
$\therefore P(1)+P(2)+P(3)+P(4)+P(5)+P(6)+P(7)=1$
$\therefore K+2 K+3 K+K^{2}+K^{2}+K+2 K^{2}+4 K^{2}=1$

$$
\begin{gathered}
\therefore 8 K^{2}+7 K=1 \\
\therefore 8 K^{2}+7 K-1=0 \\
\therefore \quad \text { or } \quad K=-1 \text { (Not possible) } \\
\therefore K=\frac{1}{8}
\end{gathered}
$$

pmf is,

\therefore| X | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{P}(\mathrm{x})$ | $\frac{1}{8}$ | $\frac{2}{8}$ | $\frac{3}{8}$ | $\frac{1}{64}$ | $\frac{9}{64}$ | $\frac{2}{64}$ | $\frac{4}{64}$ |

ii) $P(x<5)$

$$
\therefore \quad P(x<5)=p(1)+P(2)+P(3)+P(4)
$$

$$
=\frac{1}{8}+\frac{2}{8}+\frac{3}{8}+\frac{1}{64}
$$

$$
=\frac{49}{64}
$$

2 a) Calculation coefficient of correlation between x and y

$$
\begin{aligned}
& \begin{array}{llllll}
\mathrm{x} & 3 & 6 & 4 & 5 & 7
\end{array} \\
& y: \begin{array}{llllll}
x & 2 & 4 & 5 & 3 & 6
\end{array} \\
& \text { Ans :- } \mathrm{n}=5 \\
& \bar{x}=\frac{\sum X}{n}=\frac{25}{5}=5 \\
& \bar{y}=\frac{\sum Y}{n}=\frac{20}{5}=4
\end{aligned}
$$

X	Y	$\mathrm{x}=\mathrm{X}-\overline{\mathrm{X}}$	$\mathrm{Y}=\mathrm{Y}-\bar{Y}$	x^{2}	y^{2}	XY
3	2	-2	-2	4	4	4
6	4	1	0	1	0	0
4	5	-1	1	1	1	-1
5	3	0	-1	0	1	0
7	6	2	2	4	4	4
$\sum X=25$	$\sum Y=20$			$x^{2}=10$	$\sum y^{2}=10$	$\sum x y=7$

\therefore Coefficient of correlation between x and y ,

$$
\begin{aligned}
& r=\frac{\sum x y}{\sqrt{\sum X^{2} \cdot \sum y^{2}}}=\frac{7}{\sqrt{10.10}}=\frac{7}{10}=0.7 \\
& \therefore \quad r=0.7
\end{aligned}
$$

2 b) A random sample of size 16 from normal population. Showed a mean of 103.75 cm and sum of squares of deviation from the mean $843.75 \mathrm{~cm}^{2}$ can we say that the population has mean of 108.75 cm ?
$\mathrm{n}=16$
$\bar{x}=103.75$
$\epsilon(x-\bar{x})^{2}=83.75$

1) $H_{0}: \mu=108.75$

$$
H_{1}: \mu \neq 108.75
$$

2) $t=\frac{\frac{\bar{x}-\mu}{S}}{\sqrt{n-1}}$

$$
s=\sqrt{\frac{E(x-\bar{x})^{2}}{n}}=\sqrt{\frac{83.75}{16}}=2.2878
$$

OUR CENTERS :

$$
\begin{aligned}
& \therefore t=\frac{\frac{103.75-108.75}{2.2878}}{\sqrt{15}}=-8.464 \\
& \therefore|t|=8.464 \text { (Calculated Value) }
\end{aligned}
$$

3) Table value

Los $=5 \%$
dof $=\mathrm{n}-1=16-1=15$
$\mathrm{t}=2.131 \quad$ (table value)
\therefore cal value $>$ table value
$\therefore \quad H_{0}$ is rejected
i.e H_{1} is accepted

Population does not have a mean of 105.75
$2 \mathrm{c})$ Prove that $\mathrm{G}=\{1,-1 . i,-i\}$ is a group under usual multiplication of complex numbers.

Ans. Let $\mathrm{a}, \mathrm{b} \in \mathrm{G}$
The composition table is

$*$	1	-1	i	$-i$
1	1	-1	i	$-i$
-1	-1	1	$-i$	i
i	i	$-i$	-1	1
$-i$	$-i$	i	1	-1

From above table, we observe,
a* b exists and $a * b \in G$.
$\because *$ is binary operator in G .

G1:

Multiplication of complex number is associative.
\therefore * is associative.
G2:
From table, we observe, first row is same as the header.
$\therefore 1 \in \mathrm{G}$ is the identity.
\therefore Identity exists.

G3:

From table, we observe, identity elements (i.e.1)is present in each row.
$\therefore 1^{-1}=1 ;(-1)^{-1}=-1 ; \mathrm{i}^{-1}=-\mathrm{i} ;(-\mathrm{i})^{-1}=\mathrm{i}$
\therefore inverse of each elements exist and each inverse $\in G$.
\therefore Inverse exists. Hence, G is group usual multiplication of complex number.

3 a) Draw Hasse diagram for $\left(D_{75} \leq\right)$, Check whether its a lattice.
Ans $: D_{75}=\{1,3,5,15,25,75\}$

Hasse Diagram :

1
LUB

V	1	3	5	15	25	75
1	1	3	5	15	25	75
3	3	3	15	15	75	75
5	5	15	5	15	25	75
15	15	15	15	15	75	75
25	25	75	25	75	25	75
75	75	75	75	75	75	75

OUR CENTERS :
KALYAN | DOMBIVLI | THANE | NERUL | DADAR

ENGINEERING
GLB

\wedge	1	3	5	15	25	75
1	1	1	1	1	1	1
3	1	3	1	3	1	3
5	1	1	5	5	5	5
15	1	3	5	15	5	15
25	1	1	5	5	25	25
75	1	3	5	15	25	75

Since LUB \& GLB exist for all combination D_{75} is lattice.

3 b) Out of 1000 families of $\mathbf{3}$ children each how many would you expect to have $\mathbf{2}$ boys and 1 girl? (06)

Ans :-N = 1000

$$
\begin{gathered}
n=3 \\
p=0.5 \\
q=0.5
\end{gathered}
$$

Using Binomial Distribution, $\quad P(x)={ }^{n} c_{x} p^{x} q^{n-x}$
$\therefore \mathrm{P}(2$ boys and 1 girl $)={ }^{3} C_{2}(0.5)^{2}(0.5)^{1} \times{ }^{3} C_{1}(0.5)^{1}(0.5)^{2}$

$$
\begin{gathered}
=(3)(0.125) \times(3)(0.125) \\
=0.1406
\end{gathered}
$$

$\therefore \quad$ Expected Number $=\mathrm{Np}$

$$
\begin{aligned}
& =1000 \times 0.1406 \\
& =140.6 \\
& \approx 140
\end{aligned}
$$

3c)
i) Find last digit of base 7 expansion of 3^{100} i. e $\mathbf{3}^{\mathbf{1 0 0}}(\bmod 7)$ by using Fermat's theorem.

Ans: By Fermat's little theorem, $a^{P-1} \equiv 1(\bmod p)$

$$
\begin{aligned}
& \therefore \mathrm{a}=3, \mathrm{p}=7 \\
& 3^{7-1} \equiv 1(\bmod 7) \\
& 3^{6} \equiv 1(\bmod 7) \\
& 3^{96} \equiv 1(\bmod 7)
\end{aligned}
$$

$$
3^{100} \equiv 81(\bmod 7)
$$

ii) Find the Legendre's symbol $\left(\frac{19}{23}\right)$

$$
\begin{align*}
19 & \equiv 3(\bmod 4) \\
23 & \equiv 3(\bmod 4) \\
\therefore\left(\frac{19}{23}\right) & =-\left(\frac{23}{19}\right) \rightarrow \tag{1}\\
\left(\frac{23}{19}\right) & =\left(\frac{4}{19}\right)=\left(\frac{2^{2}}{19}\right)=1 \rightarrow \tag{2}
\end{align*}
$$

\therefore from (1) \& (2)

$$
\left(\frac{19}{23}\right)=-1
$$

4 a) Can a complete graph with 8 vertices have 40 edges excluding self - loop.
Ans: Complete Graph . $\left(K_{n}\right)$
A simple graph is complete graph in which every pair of vertices are adjacent.
Degree of every vertex $=(\mathrm{n}-1)$.
No. of edges, $E=\frac{n(n-1)}{2}$
\therefore for 8 vertices, $E=\frac{8(8-1)}{2}=28$
\therefore A complete graph with 8 vertices have 28 edges.

4 b) Find remainder when 2^{50} and 41^{65} are divisible by 7
Ans: (i)We know, $2^{3}=8=7 \times 1+1$
$\therefore 2^{3}=8 \equiv 1(\bmod 7)$
$\therefore\left(2^{3}\right)^{16} \equiv 1^{16}(\bmod 7)$
$\therefore 2^{48} \equiv 1(\bmod 7)$
$\therefore 2^{48} \times 2^{2} \equiv 1 \times 2^{2}(\bmod 7)$
$\therefore 2^{50} \equiv 4(\bmod 7)$
Hence, the remainder when 2^{50} is divided by 7 is 4 .
(ii) We know, $41=5 \times 7+6 \therefore \quad 41 \equiv 6(\bmod 7)$

$$
\begin{gathered}
41 \equiv 1(\bmod 7) \\
(41)^{65} \equiv(-1)^{65}(\bmod 7) \\
41^{65} \equiv-1(\bmod 7) \\
41^{65} \equiv 6(\bmod 7)
\end{gathered}
$$

Hence, the remainder when 41^{65} is divided by 7 is 6 .

4 c) Investigate the association between the darkness of eye colour in father and son from the following data:
(06)

	Colour of Father's eyes			
Colour of son's eyes		Dark	Not Dark	Total
	Dark	48	90	138
	Not Dark	80	782	862
	Total	128	872	1000

Ans.

Observed Frequency (0)	Expected Frequency (E)	$x^{2}=\frac{(o-E)^{2}}{E}$
48	18	50,0000
90	120	7.5000
80	110	8.1818
782	752	1.1968
		66.8786

Step I:

Null Hypothesis $\left(\mathrm{H}_{0}\right)$: There is no association between the darkness of eye colour in father and son.
Alternative Hypothesis $\left(\mathrm{H}_{\mathrm{a}}\right)$: There is association between the darkness of eye colour in father \& son. (Two tailed test).

Step 2:
LOS $=5 \%$ (Two tailed test)
Degree of Fredom $=(r-1)(c-1)$

$$
\begin{aligned}
& =(2-1)(2-1) \\
& =1
\end{aligned}
$$

\therefore Critical value $\left(x_{a}{ }^{2}\right)=3.841$
Step 3: Test Statistic
$x_{\text {cal }}{ }^{2}=\sum \frac{(O-E)^{2}}{E}=66.8786$
Step 5: Decision
Since $x_{\text {cal }}{ }^{2}>x_{a}{ }^{2}, \mathrm{H}_{0}$ is rejected.
\therefore There is association between the darkness of eye colour in father and son.

5 a) Let $L=\{1,2,3,4,12\}$ and the relation be " is divisible by " write compliments of L.

Ans: Hasse Diagram

1

Elements	1	2	3	4	12
Compliments	12	3	2,4	3	1

5 b) If x is a Poisson variate and $p(x=0)=6 p(x=3)$ Find $P(x=2)$
Ans : Using Poisson Distribution, $\mathrm{P}(\mathrm{x})=\frac{e^{-m} \cdot m^{x}}{x!}$

$$
P(x=0)=6 P(x=3)
$$

ENGINEERING
$\frac{e^{-m} \cdot m^{0}}{0!}=6 \frac{e^{-m} \cdot m^{3}}{3!}$
$\therefore 1=m^{3}$

Or m=1
$\therefore \quad P(x=2)=\frac{e^{-1} \cdot 1^{2}}{2!}=0.1839$

5 c) Define the following terms giving illustration.

1.	Simple graph	2.	Complete graph
3.	Bipartite graph	4.	Planar graph

1. Simple Graphs (K)
\rightarrow A graph in which there are No loops, No Multiple edges and every vertex has same degree.
No. of Edges, $E=\frac{n \times d}{2}, \quad \begin{aligned} & n \rightarrow \text { no.of vertex } . \\ & d \rightarrow \text { degree of vertex } .\end{aligned}$

Example :- $4 \square$
$\therefore E=\frac{4 \times 2}{2}=4$
2
1
2. Complete Graph . $\left(K_{n}\right)$
\rightarrow A simple graph is complete graph in which every pair of vertices are adjacent.
Degree of every vertex $=(\mathrm{n}-1)$. No. of edges, $E=\frac{n(n-1)}{2}$

Example :-
4 Vertices

OUR CENTERS :

3. Bipartite Graph

\rightarrow A graph G (V, E) is called Bipartite (= of two parts) if
(i) $\quad V$ can be expressed as a Union of two disjoint sets U and W (V = UUW and UnW= \varnothing)
(ii) Every edge in E has one vertex in U and the Other in W .

Example

$\therefore \quad U=\{a, c\}, \quad W=\{b, d\}$
$\therefore \mathrm{V}=\mathrm{U} \cup \mathrm{W} \& \mathrm{U} \cap \mathrm{W}=\emptyset$

4. Planar Graph

\rightarrow The Graph drawn in such a way that no two edges intersect, is called a Planar Graph.
Example :-

6 a) Solve : $x=1(\bmod 5), x=2(\bmod 6), x=3(\bmod 7)$
Ans:

$$
\begin{array}{ll}
a_{1}=1 & m_{1}=5 \\
a_{2}=2 & m_{2}=6 \\
a_{3}=3 & m_{3}=7
\end{array}
$$

$$
\begin{aligned}
& M=m_{1} \cdot m_{2} \cdot m_{3} \\
& M=5 \times 6 \times 7=210 \\
& M_{1}=6 \times 7=42 \\
& M_{2}=5 \times 7=35
\end{aligned}
$$

$$
M_{3}=5 \times 6=30
$$

$$
\begin{array}{llc}
M_{1} x \equiv 1\left(\bmod m_{1}\right) & M_{2} x \equiv 1\left(\bmod m_{2}\right) & M_{3} x \equiv 1\left(\bmod m_{3}\right) \\
42 x \equiv 1(\bmod 5) & 35 x \equiv 1(\bmod 6) & 30 x \equiv 1(\bmod 7) \\
1 \equiv 42 x(\bmod 5) & 1 \equiv 35 x(\bmod 6) & 1 \equiv 30 x(\bmod 7) \\
1 \equiv 2 x(\bmod 5) & 1 \equiv 5 x(\bmod 6) & 1 \equiv 2 x(\bmod 7) \\
3 \equiv 6 x(\bmod 5) & 1 \equiv-x(\bmod 6) & 4 \equiv 8 x(\bmod 7) \\
3 \equiv x(\bmod 5) & x \equiv-1(\bmod 6) & 4 \equiv x(\bmod 7) \\
x \equiv 3(\bmod 5) & x \equiv 5(\bmod 6) & x \equiv 4(\bmod 7)
\end{array}
$$

By Chinese Remainder Theorem,

$$
\begin{aligned}
& \therefore \quad x \equiv\left[a_{1} M_{1} x_{1}+a_{2} M_{2} x_{2}+a_{3} M_{3} x_{3}\right] \text { modulo } M . \\
& x \equiv[(1)(42)(3)+(2)(35)(5)+(3)(30)(4)] \text { modulo } 210 \\
& x \equiv 836(\bmod 210) \\
& x \equiv 206(\bmod 210) \\
& \therefore x=206 \text { is one solution. General solution is given by, } x=206+210 k \text { where } \mathrm{k} \text { is any } \\
& \text { integer }
\end{aligned}
$$

6 b) A certain injection administered to 12 patients resulted in following changes of blood pressure ($5,2,8,-1,3,0,6,-2,1,5,0,4$) can it be concluded that injection will be in general accompanied by an increasein blood pressure ?

Ans: $\mathrm{n}=12$

$$
\begin{aligned}
& H_{0}: \square=0 \\
& H_{1}: ⿴ 囗=0
\end{aligned}
$$

X	$d=x-a$	d^{2}
5	3	9
2	0	0
3	6	36
-1	-3	9
3	1	1
0	-2	4
6	4	16
-2	-4	16

ENGINEERING

1	-1	1
5	-3	4
0	-2	4
4	2	4

Let $\quad a=2$
$\in d=7 \quad \in d^{2}=109$
$\bar{x}=a+\frac{\in d}{n}$
$\therefore \quad \bar{x}=\frac{2+7}{12}=2.5833$
$\in(x-\bar{x})^{2}=\in d^{2}-\frac{(\in d)^{2}}{n}$
$=109-\frac{(7)^{2}}{12}$
$=104.916$
$s=\sqrt{\frac{\epsilon(x-\bar{x})^{2}}{n}}=\sqrt{\frac{104.916}{12}}=2.956$
$t=\frac{\frac{\bar{x}}{s}}{\sqrt{n-1}}=\frac{2.5833}{2.956}=2.898 \quad$ (Calculated Value)

Table value
Los \rightarrow 5\%
$\mathrm{dof} \rightarrow \mathrm{n}-1=11$
$\therefore \quad k=2.201$ (Table value)
Cal cal > Table value
$\therefore \quad H_{0}$ is rejected, H_{1} is accepted.
\therefore It can be concluded that injection will in general accompanied by increase B. P.

6 c)
(08)
(i)Write the following permutation as product of disjoint cycles.

$$
f=\left(\begin{array}{llll}
1 & 3 & 2 & 5
\end{array}\right)\left(\begin{array}{lll}
1 & 4 & 5
\end{array}\right)\left(\begin{array}{lll}
2 & 5
\end{array}\right)
$$

Ans.

$$
\left.\begin{array}{c}
f(4)=\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)(145)(251
\end{array}\right)(4)
$$

$$
\therefore f(4)=1
$$

$\therefore f(5)=4$

$$
\begin{aligned}
& f(5)=(1325)(145)(251)(5) \\
& =\left(\begin{array}{ll}
1 & 2
\end{array} 5\right)(145)(1) \\
& =\left(\begin{array}{ll}
1 & 3
\end{array} 2\right)(4)
\end{aligned}
$$

$$
\begin{aligned}
& f(1)=(1325)(145)(251)(1) \\
& =(1325)(145) \\
& =\left(\begin{array}{ll}
1 & 3
\end{array} 25\right)(2) \\
& \therefore f(1)=5 \\
& f(2)=(1325)(145)(251)(2) \\
& =\left(\begin{array}{ll}
1 & 3
\end{array} 2\right)(145)(5) \\
& =\left(\begin{array}{ll}
1 & 3
\end{array} 2\right)(1) \\
& \therefore f(2)=3 \\
& f(3)=(1325)(145)(251)(3) \\
& =\left(\begin{array}{ll}
1 & 2
\end{array} 5\right)(145)(3) \\
& =\left(\begin{array}{lll}
1 & 3 & 2
\end{array}\right)(3) \\
& \therefore f(3)=2
\end{aligned}
$$

ENGINEERING
$\therefore f=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 2 & 1 & 4\end{array}\right)$
Hence, expressing permutation f as the product of disjoint cycle we have $f=(154)(23)$
(ii) Simplify as sum of product $(A+B)\left(A+B^{\prime}\right)\left(A^{\prime}+B\right)\left(A^{\prime}+B^{\prime}\right)$

Ans. Consider,

$$
\begin{array}{ll}
& (A+B)\left(A+B^{\prime}\right)\left(A^{\prime}+B\right)\left(A^{\prime}+B^{\prime}\right) \\
\equiv & {\left[(A+B)\left(A^{\prime}+B^{\prime}\right)\right]\left[\left(A+B^{\prime}\right)\left(A^{\prime}+B\right)\right]} \\
\equiv\left[A\left(A^{\prime}+B^{\prime}\right)+B\left(A^{\prime}+B^{\prime}\right)\right]\left[A\left(A^{\prime}+B\right)+B^{\prime}\left(A^{\prime}+B\right)\right] & \\
\equiv\left[\left(A A^{\prime}+A B^{\prime}+B A^{\prime}+B B^{\prime}\right]\left[A A^{\prime}+A B+B^{\prime} A+B^{\prime} B\right]\right. & \\
\equiv\left[0+A B^{\prime}+B A^{\prime}+0\right]\left[0+A B+B^{\prime} A^{\prime}+0\right] & \text { (Complement Law) } \\
\equiv\left[A B^{\prime}+B A^{\prime}\right]\left[A B+B^{\prime} A^{\prime}\right] & \\
\equiv A B^{\prime}\left[A B+B^{\prime} A^{\prime}\right]+B A^{\prime}\left[A B+B^{\prime} A^{\prime}\right] & \\
\equiv\left(A B^{\prime}\right)(A B)+\left(A B^{\prime}\right)\left(B^{\prime} A^{\prime}\right)+\left(B A^{\prime}\right)(A B)+\left(B A^{\prime}\right)\left(B^{\prime} A^{\prime}\right) & \\
\equiv\left(A B^{\prime}\right)(B A)+\left(B^{\prime} A\right)\left(A^{\prime} B^{\prime}\right)+\left(B A^{\prime}\right)(A B)+\left(A^{\prime} B\right)\left(B^{\prime} A^{\prime}\right) & \text { (Complement Law) } \\
\equiv A\left(B^{\prime} B\right) A+B^{\prime}\left(A A^{\prime}\right) B^{\prime}+B\left(A^{\prime} A\right) B+A^{\prime}\left(B B^{\prime}\right) A^{\prime} & \text { (Associative Law) } \\
\equiv A(0) A+B^{\prime}(0) B^{\prime}+B(0) B+A^{\prime}(0) A^{\prime} & \text { (Complement Law) } \\
\equiv 0+0+0+0 & \text { (Domination Law) } \\
\equiv 0(i d e m p o t e n t ~ L a w) & \\
\therefore(A+B)\left(A+B^{\prime}\right)\left(A^{\prime}+B\right)\left(A^{\prime}+B^{\prime}\right)=0 &
\end{array}
$$

